1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
use crate::math::Isometry;
use crate::pipeline::narrow_phase::{
    ContactAlgorithm, ContactDispatcher, ContactManifoldGenerator,
};
use crate::query::{
    visitors::AABBSetsInterferencesCollector, ContactManifold, ContactPrediction,
    ContactPreprocessor,
};
use crate::shape::{CompositeShape, Shape};
use crate::utils::DeterministicState;
use na::RealField;
use std::collections::{hash_map::Entry, HashMap};

/// Collision detector between a concave shape and another shape.
pub struct CompositeShapeCompositeShapeManifoldGenerator<N> {
    sub_detectors: HashMap<(usize, usize), (ContactAlgorithm<N>, usize), DeterministicState>,
    interferences: Vec<(usize, usize)>,
    timestamp: usize,
}

impl<N> CompositeShapeCompositeShapeManifoldGenerator<N> {
    /// Creates a new collision detector between a concave shape and another shape.
    pub fn new() -> CompositeShapeCompositeShapeManifoldGenerator<N> {
        CompositeShapeCompositeShapeManifoldGenerator {
            sub_detectors: HashMap::with_hasher(DeterministicState),
            interferences: Vec::new(),
            timestamp: 0,
        }
    }
}

impl<N: RealField> CompositeShapeCompositeShapeManifoldGenerator<N> {
    fn do_update(
        &mut self,
        dispatcher: &dyn ContactDispatcher<N>,
        m1: &Isometry<N>,
        g1: &dyn CompositeShape<N>,
        proc1: Option<&dyn ContactPreprocessor<N>>,
        m2: &Isometry<N>,
        g2: &dyn CompositeShape<N>,
        proc2: Option<&dyn ContactPreprocessor<N>>,
        prediction: &ContactPrediction<N>,
        manifold: &mut ContactManifold<N>,
    ) {
        self.timestamp += 1;

        // Find new collisions
        let ls_m2 = m1.inverse() * m2;
        // For transforming AABBs from g2 in the local space of g1.
        let ls_m2_abs_rot = ls_m2.rotation.to_rotation_matrix().matrix().abs();

        {
            let mut visitor = AABBSetsInterferencesCollector::new(
                prediction.linear(),
                &ls_m2,
                &ls_m2_abs_rot,
                &mut self.interferences,
            );
            g1.bvh().visit_bvtt(g2.bvh(), &mut visitor);
        }

        for id in self.interferences.drain(..) {
            match self.sub_detectors.entry(id) {
                Entry::Occupied(mut entry) => {
                    entry.get_mut().1 = self.timestamp;
                }
                Entry::Vacant(entry) => {
                    let mut new_detector = None;

                    g1.map_part_at(id.0, &Isometry::identity(), &mut |_, g1| {
                        g2.map_part_at(id.1, &Isometry::identity(), &mut |_, g2| {
                            new_detector = dispatcher.get_contact_algorithm(g1, g2)
                        });
                    });

                    if let Some(new_detector) = new_detector {
                        let _ = entry.insert((new_detector, self.timestamp));
                    }
                }
            }
        }

        // Update all collisions
        let timestamp = self.timestamp;
        self.sub_detectors.retain(|key, detector| {
            if detector.1 != timestamp {
                false
            } else {
                let mut keep = false;
                g1.map_part_and_preprocessor_at(
                    key.0,
                    m1,
                    prediction,
                    &mut |m1, g1, part_proc1| {
                        g2.map_part_and_preprocessor_at(
                            key.1,
                            m2,
                            prediction,
                            &mut |m2, g2, part_proc2| {
                                // FIXME: change the update functions.
                                keep = detector.0.generate_contacts(
                                    dispatcher,
                                    m1,
                                    g1,
                                    Some(&(proc1, part_proc1)),
                                    m2,
                                    g2,
                                    Some(&(proc2, part_proc2)),
                                    prediction,
                                    manifold,
                                );
                            },
                        );
                    },
                );

                keep
            }
        });
    }
}

impl<N: RealField> ContactManifoldGenerator<N>
    for CompositeShapeCompositeShapeManifoldGenerator<N>
{
    fn generate_contacts(
        &mut self,
        d: &dyn ContactDispatcher<N>,
        ma: &Isometry<N>,
        a: &dyn Shape<N>,
        proc1: Option<&dyn ContactPreprocessor<N>>,
        mb: &Isometry<N>,
        b: &dyn Shape<N>,
        proc2: Option<&dyn ContactPreprocessor<N>>,
        prediction: &ContactPrediction<N>,
        manifold: &mut ContactManifold<N>,
    ) -> bool {
        if let (Some(csa), Some(csb)) = (a.as_composite_shape(), b.as_composite_shape()) {
            self.do_update(d, ma, csa, proc1, mb, csb, proc2, prediction, manifold);
            true
        } else {
            false
        }
    }
}