1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
//! Definition of the segment shape.

use crate::math::{Isometry, Point, Vector};
use crate::shape::{ConvexPolygonalFeature, ConvexPolyhedron, FeatureId, SupportMap};
#[cfg(feature = "dim2")]
use crate::utils;
use crate::utils::IsometryOps;
use na::{self, RealField, Unit};
use std::f64;
use std::mem;

/// A segment shape.
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[repr(C)]
#[derive(PartialEq, Debug, Clone)]
pub struct Segment<N: RealField> {
    a: Point<N>,
    b: Point<N>,
}

/// Logical description of the location of a point on a triangle.
#[derive(PartialEq, Debug, Clone, Copy)]
pub enum SegmentPointLocation<N: RealField> {
    /// The point lies on a vertex.
    OnVertex(usize),
    /// The point lies on the segment interior.
    OnEdge([N; 2]),
}

impl<N: RealField> SegmentPointLocation<N> {
    /// The barycentric coordinates corresponding to this point location.
    pub fn barycentric_coordinates(&self) -> [N; 2] {
        let mut bcoords = [N::zero(); 2];

        match self {
            SegmentPointLocation::OnVertex(i) => bcoords[*i] = N::one(),
            SegmentPointLocation::OnEdge(uv) => {
                bcoords[0] = uv[0];
                bcoords[1] = uv[1];
            }
        }

        bcoords
    }
}

impl<N: RealField> Segment<N> {
    /// Creates a new segment from two points.
    #[inline]
    pub fn new(a: Point<N>, b: Point<N>) -> Segment<N> {
        Segment { a, b }
    }

    /// Creates the reference to a segment from the reference to an array of two points.
    pub fn from_array(arr: &[Point<N>; 2]) -> &Segment<N> {
        unsafe { mem::transmute(arr) }
    }
}

impl<N: RealField> Segment<N> {
    /// The first point of this segment.
    #[inline]
    pub fn a(&self) -> &Point<N> {
        &self.a
    }

    /// The second point of this segment.
    #[inline]
    pub fn b(&self) -> &Point<N> {
        &self.b
    }
}

impl<N: RealField> Segment<N> {
    /// The direction of this segment scaled by its length.
    ///
    /// Points from `self.a()` toward `self.b()`.
    pub fn scaled_direction(&self) -> Vector<N> {
        self.b - self.a
    }

    /// The length of this segment.
    pub fn length(&self) -> N {
        self.scaled_direction().norm()
    }

    /// Swaps the two vertices of this segment.
    pub fn swap(&mut self) {
        mem::swap(&mut self.a, &mut self.b)
    }

    /// The unit direction of this segment.
    ///
    /// Points from `self.a()` toward `self.b()`.
    /// Returns `None` is both points are equal.
    pub fn direction(&self) -> Option<Unit<Vector<N>>> {
        Unit::try_new(self.scaled_direction(), N::default_epsilon())
    }

    /// In 2D, the not-normalized counterclockwise normal of this segment.
    #[cfg(feature = "dim2")]
    pub fn scaled_normal(&self) -> Vector<N> {
        let dir = self.scaled_direction();
        Vector::new(dir.y, -dir.x)
    }

    /// In 2D, the normalized counterclockwise normal of this segment.
    #[cfg(feature = "dim2")]
    pub fn normal(&self) -> Option<Unit<Vector<N>>> {
        Unit::try_new(self.scaled_normal(), N::default_epsilon())
    }

    #[cfg(feature = "dim3")]
    pub(crate) fn normal(&self) -> Option<Unit<Vector<N>>> {
        None
    }

    /// Applies the isometry `m` to the vertices of this segment and returns the resulting segment.
    pub fn transformed(&self, m: &Isometry<N>) -> Self {
        Segment::new(m * self.a, m * self.b)
    }

    /// Computes the point at the given location.
    pub fn point_at(&self, location: &SegmentPointLocation<N>) -> Point<N> {
        match *location {
            SegmentPointLocation::OnVertex(0) => self.a,
            SegmentPointLocation::OnVertex(1) => self.b,
            SegmentPointLocation::OnEdge(bcoords) => {
                self.a * bcoords[0] + self.b.coords * bcoords[1]
            }
            _ => panic!(),
        }
    }

    /// Checks that the given direction in world-space is on the tangent cone of the given `feature`.
    pub fn tangent_cone_contains_dir(
        &self,
        feature: FeatureId,
        m: &Isometry<N>,
        dir: &Unit<Vector<N>>,
    ) -> bool {
        let ls_dir = m.inverse_transform_unit_vector(dir);

        if let Some(direction) = self.direction() {
            match feature {
                FeatureId::Vertex(id) => {
                    let dot = ls_dir.dot(&direction);
                    if id == 0 {
                        dot >= N::one() - N::default_epsilon()
                    } else {
                        -dot >= N::one() - N::default_epsilon()
                    }
                }
                #[cfg(feature = "dim3")]
                FeatureId::Edge(_) => {
                    ls_dir.dot(&direction).abs() >= N::one() - N::default_epsilon()
                }
                FeatureId::Face(id) => {
                    let mut dir = Vector::zeros();
                    if id == 0 {
                        dir[0] = direction[1];
                        dir[1] = -direction[0];
                    } else {
                        dir[0] = -direction[1];
                        dir[1] = direction[0];
                    }

                    ls_dir.dot(&dir) <= N::zero()
                }
                _ => true,
            }
        } else {
            false
        }
    }
}

impl<N: RealField> SupportMap<N> for Segment<N> {
    #[inline]
    fn support_point(&self, m: &Isometry<N>, dir: &Vector<N>) -> Point<N> {
        let local_dir = m.inverse_transform_vector(dir);

        if self.a.coords.dot(&local_dir) > self.b.coords.dot(&local_dir) {
            m * self.a
        } else {
            m * self.b
        }
    }
}

impl<N: RealField> ConvexPolyhedron<N> for Segment<N> {
    fn vertex(&self, id: FeatureId) -> Point<N> {
        if id.unwrap_vertex() == 0 {
            self.a
        } else {
            self.b
        }
    }

    #[cfg(feature = "dim3")]
    fn edge(&self, _: FeatureId) -> (Point<N>, Point<N>, FeatureId, FeatureId) {
        (self.a, self.b, FeatureId::Vertex(0), FeatureId::Vertex(1))
    }

    #[cfg(feature = "dim3")]
    fn face(&self, _: FeatureId, _: &mut ConvexPolygonalFeature<N>) {
        panic!("A segment does not have any face in dimensions higher than 2.")
    }

    #[cfg(feature = "dim2")]
    fn face(&self, id: FeatureId, face: &mut ConvexPolygonalFeature<N>) {
        face.clear();

        if let Some(normal) = utils::ccw_face_normal([&self.a, &self.b]) {
            face.set_feature_id(id);

            match id.unwrap_face() {
                0 => {
                    face.push(self.a, FeatureId::Vertex(0));
                    face.push(self.b, FeatureId::Vertex(1));
                    face.set_normal(normal);
                }
                1 => {
                    face.push(self.b, FeatureId::Vertex(1));
                    face.push(self.a, FeatureId::Vertex(0));
                    face.set_normal(-normal);
                }
                _ => unreachable!(),
            }
        } else {
            face.push(self.a, FeatureId::Vertex(0));
            face.set_feature_id(FeatureId::Vertex(0));
        }
    }

    fn feature_normal(&self, feature: FeatureId) -> Unit<Vector<N>> {
        if let Some(direction) = self.direction() {
            match feature {
                FeatureId::Vertex(id) => {
                    if id == 0 {
                        direction
                    } else {
                        -direction
                    }
                }
                #[cfg(feature = "dim3")]
                FeatureId::Edge(_) => {
                    let iamin = direction.iamin();
                    let mut normal = Vector::zeros();
                    normal[iamin] = N::one();
                    normal -= *direction * direction[iamin];
                    Unit::new_normalize(normal)
                }
                FeatureId::Face(id) => {
                    let mut dir = Vector::zeros();
                    if id == 0 {
                        dir[0] = direction[1];
                        dir[1] = -direction[0];
                    } else {
                        dir[0] = -direction[1];
                        dir[1] = direction[0];
                    }
                    Unit::new_unchecked(dir)
                }
                _ => panic!("Invalid feature ID: {:?}", feature),
            }
        } else {
            Vector::y_axis()
        }
    }

    #[cfg(feature = "dim2")]
    fn support_face_toward(
        &self,
        m: &Isometry<N>,
        dir: &Unit<Vector<N>>,
        face: &mut ConvexPolygonalFeature<N>,
    ) {
        let seg_dir = self.scaled_direction();

        if dir.perp(&seg_dir) >= na::zero() {
            self.face(FeatureId::Face(0), face);
        } else {
            self.face(FeatureId::Face(1), face);
        }
        face.transform_by(m)
    }

    #[cfg(feature = "dim3")]
    fn support_face_toward(
        &self,
        m: &Isometry<N>,
        _: &Unit<Vector<N>>,
        face: &mut ConvexPolygonalFeature<N>,
    ) {
        face.clear();
        face.push(self.a, FeatureId::Vertex(0));
        face.push(self.b, FeatureId::Vertex(1));
        face.push_edge_feature_id(FeatureId::Edge(0));
        face.set_feature_id(FeatureId::Edge(0));
        face.transform_by(m)
    }

    fn support_feature_toward(
        &self,
        transform: &Isometry<N>,
        dir: &Unit<Vector<N>>,
        eps: N,
        face: &mut ConvexPolygonalFeature<N>,
    ) {
        face.clear();
        let seg = self.transformed(transform);
        let ceps = eps.sin();

        if let Some(seg_dir) = seg.direction() {
            let cang = dir.dot(&seg_dir);

            if cang > ceps {
                face.set_feature_id(FeatureId::Vertex(1));
                face.push(seg.b, FeatureId::Vertex(1));
            } else if cang < -ceps {
                face.set_feature_id(FeatureId::Vertex(0));
                face.push(seg.a, FeatureId::Vertex(0));
            } else {
                #[cfg(feature = "dim3")]
                {
                    face.push(seg.a, FeatureId::Vertex(0));
                    face.push(seg.b, FeatureId::Vertex(1));
                    face.push_edge_feature_id(FeatureId::Edge(0));
                    face.set_feature_id(FeatureId::Edge(0));
                }
                #[cfg(feature = "dim2")]
                {
                    if dir.perp(&seg_dir) >= na::zero() {
                        seg.face(FeatureId::Face(0), face);
                    } else {
                        seg.face(FeatureId::Face(1), face);
                    }
                }
            }
        }
    }

    fn support_feature_id_toward(&self, local_dir: &Unit<Vector<N>>) -> FeatureId {
        if let Some(seg_dir) = self.direction() {
            let eps: N = na::convert(f64::consts::PI / 180.0);
            let seps = eps.sin();
            let dot = seg_dir.dot(local_dir.as_ref());

            if dot <= seps {
                #[cfg(feature = "dim2")]
                {
                    if local_dir.perp(seg_dir.as_ref()) >= na::zero() {
                        FeatureId::Face(0)
                    } else {
                        FeatureId::Face(1)
                    }
                }
                #[cfg(feature = "dim3")]
                {
                    FeatureId::Edge(0)
                }
            } else if dot >= na::zero() {
                FeatureId::Vertex(1)
            } else {
                FeatureId::Vertex(0)
            }
        } else {
            FeatureId::Vertex(0)
        }
    }
}