1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
use approx::AbsDiffEq;

use crate::math::Isometry;
use crate::query::ClosestPoints;
use crate::shape::{Segment, SegmentPointLocation};
use alga::linear::EuclideanSpace;
use na::{self, RealField};

/// Closest points between segments.
#[inline]
pub fn closest_points_segment_segment<N: RealField>(
    m1: &Isometry<N>,
    seg1: &Segment<N>,
    m2: &Isometry<N>,
    seg2: &Segment<N>,
    margin: N,
) -> ClosestPoints<N> {
    let (loc1, loc2) = closest_points_segment_segment_with_locations(m1, seg1, m2, seg2);
    let p1 = seg1.point_at(&loc1);
    let p2 = seg2.point_at(&loc2);

    if na::distance_squared(&p1, &p2) <= margin * margin {
        ClosestPoints::WithinMargin(p1, p2)
    } else {
        ClosestPoints::Disjoint
    }
}

// FIXME: use this specialized procedure for distance/interference/contact determination as well.
/// Closest points between two segments.
#[inline]
pub fn closest_points_segment_segment_with_locations<N: RealField>(
    m1: &Isometry<N>,
    seg1: &Segment<N>,
    m2: &Isometry<N>,
    seg2: &Segment<N>,
) -> (SegmentPointLocation<N>, SegmentPointLocation<N>) {
    let seg1 = seg1.transformed(m1);
    let seg2 = seg2.transformed(m2);

    closest_points_segment_segment_with_locations_nD((seg1.a(), seg1.b()), (seg2.a(), seg2.b()))
}

/// Segment-segment closest points computation in an arbitrary dimension.
#[allow(non_snake_case)]
#[inline]
pub fn closest_points_segment_segment_with_locations_nD<P>(
    seg1: (&P, &P),
    seg2: (&P, &P),
) -> (
    SegmentPointLocation<P::RealField>,
    SegmentPointLocation<P::RealField>,
)
where
    P: EuclideanSpace + Copy,
{
    use alga::linear::FiniteDimVectorSpace;
    use alga::linear::NormedSpace;

    // Inspired by RealField-time collision detection by Christer Ericson.
    let d1 = *seg1.1 - *seg1.0;
    let d2 = *seg2.1 - *seg2.0;
    let r = *seg1.0 - *seg2.0;

    let a = d1.norm_squared();
    let e = d2.norm_squared();
    let f = d2.dot(&r);

    let _0: P::RealField = na::zero();
    let _1: P::RealField = na::one();

    let mut s;
    let mut t;

    let _eps = P::RealField::default_epsilon();
    if a <= _eps && e <= _eps {
        s = _0;
        t = _0;
    } else if a <= _eps {
        s = _0;
        t = na::clamp(f / e, _0, _1);
    } else {
        let c = d1.dot(&r);
        if e <= _eps {
            t = _0;
            s = na::clamp(-c / a, _0, _1);
        } else {
            let b = d1.dot(&d2);
            let ae = a * e;
            let bb = b * b;
            let denom = ae - bb;

            // Use absolute and ulps error to test collinearity.
            if denom > _eps && !ulps_eq!(ae, bb) {
                s = na::clamp((b * f - c * e) / denom, _0, _1);
            } else {
                s = _0;
            }

            t = (b * s + f) / e;

            if t < _0 {
                t = _0;
                s = na::clamp(-c / a, _0, _1);
            } else if t > _1 {
                t = _1;
                s = na::clamp((b - c) / a, _0, _1);
            }
        }
    }

    let loc1 = if s == _0 {
        SegmentPointLocation::OnVertex(0)
    } else if s == _1 {
        SegmentPointLocation::OnVertex(1)
    } else {
        SegmentPointLocation::OnEdge([_1 - s, s])
    };

    let loc2 = if t == _0 {
        SegmentPointLocation::OnVertex(0)
    } else if t == _1 {
        SegmentPointLocation::OnVertex(1)
    } else {
        SegmentPointLocation::OnEdge([_1 - t, t])
    };

    (loc1, loc2)
}