1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
use crate::{
bounding_volume::{HasBoundingVolume, AABB},
math::{Isometry, Point, DIM},
shape::Triangle,
};
use na::RealField;
impl<N: RealField> HasBoundingVolume<N, AABB<N>> for Triangle<N> {
#[inline]
fn bounding_volume(&self, m: &Isometry<N>) -> AABB<N> {
let a = m.transform_point(self.a()).coords;
let b = m.transform_point(self.b()).coords;
let c = m.transform_point(self.c()).coords;
let mut min = unsafe { Point::new_uninitialized() };
let mut max = unsafe { Point::new_uninitialized() };
for d in 0..DIM {
min.coords[d] = a[d].min(b[d]).min(c[d]);
max.coords[d] = a[d].max(b[d]).max(c[d]);
}
AABB::new(min, max)
}
#[inline]
fn local_bounding_volume(&self) -> AABB<N> {
let a = self.a().coords;
let b = self.b().coords;
let c = self.c().coords;
let mut min = unsafe { Point::new_uninitialized() };
let mut max = unsafe { Point::new_uninitialized() };
for d in 0..DIM {
min.coords[d] = a[d].min(b[d]).min(c[d]);
max.coords[d] = a[d].max(b[d]).max(c[d]);
}
AABB::new(min, max)
}
}
#[cfg(test)]
mod test {
use crate::{
bounding_volume::support_map_aabb,
math::{Isometry, Point, Translation},
shape::{Shape, Triangle},
};
use na::{RealField, UnitQuaternion};
#[test]
fn triangle_aabb_matches_support_map_aabb() {
let t = Triangle::new(
Point::new(0.3, -0.1, 0.2),
Point::new(-0.7, 1.0, 0.0),
Point::new(-0.7, 1.5, 0.0),
);
let m = Isometry::from_parts(
Translation::new(-0.2, 5.0, 0.2),
UnitQuaternion::from_euler_angles(0.0, f32::frac_pi_2(), 0.0),
);
assert_eq!(t.aabb(&m), support_map_aabb(&m, &t));
}
}