1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
use crate::math::{Isometry, Point, Vector};
use crate::shape::{ConvexPolygonalFeature, ConvexPolyhedron, FeatureId, SupportMap};
use crate::transformation;
use crate::utils::{self, IsometryOps};
use na::{self, RealField, Unit};
use std::f64;

/// A 2D convex polygon.
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(Clone, Debug)]
pub struct ConvexPolygon<N: RealField> {
    points: Vec<Point<N>>,
    normals: Vec<Unit<Vector<N>>>,
}

impl<N: RealField> ConvexPolygon<N> {
    /// Creates a new 2D convex polygon from an arbitrary set of points.
    ///
    /// This explicitly computes the convex hull of the given set of points. Use
    /// Returns `None` if the convex hull computation failed.
    pub fn try_from_points(points: &[Point<N>]) -> Option<Self> {
        let hull = transformation::convex_hull(points);
        let mut vertices = hull.unwrap().0;
        vertices.reverse(); // FIXME: it is unfortunate to have to do this reverse.

        Self::try_new(vertices)
    }

    /// Creates a new 2D convex polygon from a set of points assumed to describe a counter-clockwise convex polyline.
    ///
    /// Convexity of the input polyline is not checked.
    /// Returns `None` if some consecutive points are identical (or too close to being so).
    pub fn try_new(mut points: Vec<Point<N>>) -> Option<Self> {
        let eps = N::default_epsilon().sqrt();
        let mut normals = Vec::with_capacity(points.len());

        // First, compute all normals.
        for i1 in 0..points.len() {
            let i2 = (i1 + 1) % points.len();
            normals.push(utils::ccw_face_normal([&points[i1], &points[i2]])?);
        }

        let mut nremoved = 0;
        // See if the first vexrtex must be removed.
        if normals[0].dot(&*normals[normals.len() - 1]) > N::one() - eps {
            nremoved = 1;
        }

        // Second, find vertices that can be removed because
        // of collinearity of adjascent faces.
        for i2 in 1..points.len() {
            let i1 = i2 - 1;
            if normals[i1].dot(&*normals[i2]) > N::one() - eps {
                // Remove
                nremoved += 1;
            } else {
                points[i2 - nremoved] = points[i2];
                normals[i2 - nremoved] = normals[i2];
            }
        }

        let new_length = points.len() - nremoved;
        points.truncate(new_length);
        normals.truncate(new_length);

        if points.len() != 0 {
            Some(ConvexPolygon { points, normals })
        } else {
            None
        }
    }

    /// The vertices of this convex polygon.
    #[inline]
    pub fn points(&self) -> &[Point<N>] {
        &self.points
    }

    /// The normals of the edges of this convex polygon.
    #[inline]
    pub fn normals(&self) -> &[Unit<Vector<N>>] {
        &self.normals
    }

    /// Checks that the given direction in world-space is on the tangent cone of the given `feature`.
    pub fn tangent_cone_contains_dir(
        &self,
        feature: FeatureId,
        m: &Isometry<N>,
        dir: &Unit<Vector<N>>,
    ) -> bool {
        let local_dir = m.inverse_transform_unit_vector(dir);

        match feature {
            FeatureId::Face(id) => self.normals[id].dot(&local_dir) <= N::zero(),
            FeatureId::Vertex(id2) => {
                let id1 = if id2 == 0 {
                    self.normals.len() - 1
                } else {
                    id2 - 1
                };

                self.normals[id1].dot(&local_dir) <= N::zero()
                    && self.normals[id2].dot(&local_dir) <= N::zero()
            }
            _ => unreachable!(),
        }
    }
}

impl<N: RealField> SupportMap<N> for ConvexPolygon<N> {
    #[inline]
    fn support_point(&self, m: &Isometry<N>, dir: &Vector<N>) -> Point<N> {
        let local_dir = m.inverse_transform_vector(dir);
        let best_pt = utils::point_cloud_support_point(&local_dir, self.points());

        m * best_pt
    }
}

impl<N: RealField> ConvexPolyhedron<N> for ConvexPolygon<N> {
    fn vertex(&self, id: FeatureId) -> Point<N> {
        self.points[id.unwrap_vertex()]
    }

    fn face(&self, id: FeatureId, out: &mut ConvexPolygonalFeature<N>) {
        out.clear();

        let ia = id.unwrap_face();
        let ib = (ia + 1) % self.points.len();
        out.push(self.points[ia], FeatureId::Vertex(ia));
        out.push(self.points[ib], FeatureId::Vertex(ib));

        out.set_normal(self.normals[ia]);
        out.set_feature_id(FeatureId::Face(ia));
    }

    fn feature_normal(&self, feature: FeatureId) -> Unit<Vector<N>> {
        match feature {
            FeatureId::Face(id) => self.normals[id],
            FeatureId::Vertex(id2) => {
                let id1 = if id2 == 0 {
                    self.normals.len() - 1
                } else {
                    id2 - 1
                };
                Unit::new_normalize(*self.normals[id1] + *self.normals[id2])
            }
            _ => panic!("Invalid feature ID: {:?}", feature),
        }
    }

    fn support_face_toward(
        &self,
        m: &Isometry<N>,
        dir: &Unit<Vector<N>>,
        out: &mut ConvexPolygonalFeature<N>,
    ) {
        let ls_dir = m.inverse_transform_vector(dir);
        let mut best_face = 0;
        let mut max_dot = self.normals[0].dot(&ls_dir);

        for i in 1..self.points.len() {
            let dot = self.normals[i].dot(&ls_dir);

            if dot > max_dot {
                max_dot = dot;
                best_face = i;
            }
        }

        self.face(FeatureId::Face(best_face), out);
        out.transform_by(m);
    }

    fn support_feature_toward(
        &self,
        transform: &Isometry<N>,
        dir: &Unit<Vector<N>>,
        _angle: N,
        out: &mut ConvexPolygonalFeature<N>,
    ) {
        out.clear();
        // FIXME: actualy find the support feature.
        self.support_face_toward(transform, dir, out)
    }

    fn support_feature_id_toward(&self, local_dir: &Unit<Vector<N>>) -> FeatureId {
        let eps: N = na::convert(f64::consts::PI / 180.0);
        let ceps = eps.cos();

        // Check faces.
        for i in 0..self.normals.len() {
            let normal = &self.normals[i];

            if normal.dot(local_dir.as_ref()) >= ceps {
                return FeatureId::Face(i);
            }
        }

        // Support vertex.
        FeatureId::Vertex(utils::point_cloud_support_point_id(
            local_dir.as_ref(),
            &self.points,
        ))
    }
}