1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
use crate::math::{Isometry, Point};
use crate::pipeline::narrow_phase::{ContactDispatcher, ContactManifoldGenerator};
use crate::query::{
Contact, ContactKinematic, ContactManifold, ContactPrediction, ContactPreprocessor,
NeighborhoodGeometry,
};
use crate::shape::{Ball, FeatureId, Plane, Shape};
use na::{self, RealField};
use std::marker::PhantomData;
#[derive(Clone)]
pub struct PlaneBallManifoldGenerator<N: RealField> {
flip: bool,
phantom: PhantomData<N>,
}
impl<N: RealField> PlaneBallManifoldGenerator<N> {
#[inline]
pub fn new(flip: bool) -> PlaneBallManifoldGenerator<N> {
PlaneBallManifoldGenerator {
flip,
phantom: PhantomData,
}
}
#[inline]
fn do_update_to(
m1: &Isometry<N>,
g1: &dyn Shape<N>,
proc1: Option<&dyn ContactPreprocessor<N>>,
m2: &Isometry<N>,
g2: &dyn Shape<N>,
proc2: Option<&dyn ContactPreprocessor<N>>,
prediction: &ContactPrediction<N>,
manifold: &mut ContactManifold<N>,
flip: bool,
) -> bool {
if let (Some(plane), Some(ball)) = (g1.as_shape::<Plane<N>>(), g2.as_shape::<Ball<N>>()) {
let plane_normal = m1 * plane.normal();
let plane_center = Point::from(m1.translation.vector);
let ball_center = Point::from(m2.translation.vector);
let dist = (ball_center - plane_center).dot(plane_normal.as_ref());
let depth = -dist + ball.radius();
if depth > -prediction.linear() {
let world1 = ball_center + *plane_normal * (-dist);
let world2 = ball_center + *plane_normal * (-ball.radius());
let local1 = m1.inverse_transform_point(&world1);
let local2 = Point::origin();
let f1 = FeatureId::Face(0);
let f2 = FeatureId::Face(0);
let mut kinematic = ContactKinematic::new();
let contact;
let approx_ball = NeighborhoodGeometry::Point;
let approx_plane = NeighborhoodGeometry::Plane(*plane.normal());
if !flip {
contact = Contact::new(world1, world2, plane_normal, depth);
kinematic.set_approx1(f1, local1, approx_plane);
kinematic.set_approx2(f2, local2, approx_ball);
kinematic.set_dilation2(ball.radius());
let _ = manifold.push(contact, kinematic, Point::origin(), proc1, proc2);
} else {
contact = Contact::new(world2, world1, -plane_normal, depth);
kinematic.set_approx1(f2, local2, approx_ball);
kinematic.set_dilation1(ball.radius());
kinematic.set_approx2(f1, local1, approx_plane);
let _ = manifold.push(contact, kinematic, Point::origin(), proc2, proc1);
}
}
true
} else {
false
}
}
}
impl<N: RealField> ContactManifoldGenerator<N> for PlaneBallManifoldGenerator<N> {
#[inline]
fn generate_contacts(
&mut self,
_: &dyn ContactDispatcher<N>,
m1: &Isometry<N>,
g1: &dyn Shape<N>,
proc1: Option<&dyn ContactPreprocessor<N>>,
m2: &Isometry<N>,
g2: &dyn Shape<N>,
proc2: Option<&dyn ContactPreprocessor<N>>,
prediction: &ContactPrediction<N>,
manifold: &mut ContactManifold<N>,
) -> bool {
if !self.flip {
Self::do_update_to(m1, g1, proc1, m2, g2, proc2, prediction, manifold, false)
} else {
Self::do_update_to(m2, g2, proc2, m1, g1, proc1, prediction, manifold, true)
}
}
}